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Abstract: The rms (root-mean-square) value of various waveforms is determined without 
the use of calculus, which should be of benefit to the Technology student. These 
waveforms include the half-wave rectified sinusoid, the quarter-wave rectified sinusoid, a 
waveform consisting of a dc voltage added to a sinusoid, the sum of two sinusoids, which 
may be periodic or aperiodic, a triangular waveform, and a pulse train. Furthermore, in 
order to compute the rms value, the mean of the square of a voltage must be determined 
over an observation time. A discussion of the importance of using the correct observation 
time is also provided.  

I. Introduction 

Several authors, e.g. [1] and [2], have shown that the effective or root-mean-square (rms) 
voltage of a sinusoid can be obtained without the use of calculus. In this paper, we show 
that this can also be done for other voltage waveforms, although this does not seem to be 
widely recognized.   

These methods all use the definition of the rms voltage of a waveform ( )v t , which  is 
found simply by squaring that waveform, taking the mean (or average) of that squared 
waveform and then computing the square root, as given in equation (1): 

 area under the curve of [ ( )* ( )]mean[ ( )* ( )]  
observation lengthrms

v t v tV v t v t= = ,      (1)            

where the observation length is the period (or integer multiple of it) for periodic signals, 
and is as long as possible for aperiodic signals. More will be said about this in Section II 
C. 

This definition is, of course, a purely mathematical one. The physical interpretation of the 
rms value has already been covered by many authors, including Rico [1]. Hence, in this 
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paper, we will be considering (1), without any attempt to repeat its physical 
interpretation, which remains the same as it was for the purely sinusoidal case. 

II. Analytical Determination of the RMS Value of Some Selected Waveforms 

In this section, we will show how the rms value of the following waveforms can be 
determined without calculus:  

(i) Half-wave rectified sinusoid 
(ii) Quarter-wave rectified sinusoid 
(iii) A DC voltage added to a sinusoid 
(iv) The sum of two sinusoids, when the sum waveform is periodic or 

aperiodic 
(v) A triangular waveform, and 
(vi) A pulse train.  

A. RMS Value of a Half-wave Rectified Sinusoid 

A graph of a positive half-wave rectified sinusoid is shown in Fig. 1. For this waveform, 
we give two different methods for finding its rms value. In Method I, the half-wave 
rectified waveform is written as the sum of a sinusoid and a full-wave rectified sinusoid. 
In Method II, we use a piecewise mathematical equation for the waveform.  
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Fig. 1. Graph of a positive half-wave rectified sine-wave. 

Method I  

The equation for a positive half-wave rectified sinusoid can be written as 

( ) sin( ) / 2 sin( ) / 2.m mv t V t V tω θ ω θ= + + +                                  (2) 

Note that the second term in (2) is simply a full-wave rectified sinusoid. 

Squaring (2) gives 

22 2( )* ( ) sin ( ) / 4 sin( ) / 4 2 sin( ) sin( ) ,m m m mv t v t V t V t V t V tω θ ω θ ω θ ω θ= + + + + + +  which 
can also be written as  

2 2 2( ) sin ( ) / 2 2 sin( ) sin( ) .m m mv t V t V t V tω θ ω θ ω θ= + + + +                 (3) 

Now we need to take the mean of (3), which consists of the sum of two terms. 
Fortunately, the mean of a sum is the sum of the means, i.e. 
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mean( ) mean( ) mean( ).a b a b+ = + In this case, 2 2sin ( )ma V tω θ= +  and 
2 sin( ) sin( ) .m mb V t V tω θ ω θ= + +   

Note the mean of the second term in (3) is zero, i.e. mean( ) 0.b =  To see this, we sketch  
b as a function of the angle ( )tω θ+ , as shown in Fig.2. 
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Fig. 2. Graph of b, the second term in (3). This clearly shows that the mean(b) = 0. 

Note that for every positive value of b in Fig. 2, there is a corresponding negative value. 
Hence, the average over a complete cycle is zero.  

(Or, by symmetry, it is clear that the negative area under the curve for the second half-
cycle has the same magnitude as the positive area under the curve for the first half cycle. 
Therefore, the total area over a complete cycle is zero, and because the mean is simply 
the area over a complete cycle, divided by the period, the mean has to be zero).  

On the other hand, the mean of a is given by 

2 2 2 2mean( sin ( ) / 2) mean( / 4 / 4cos(2 2 )),m m mV t V V tω θ ω θ+ = − +                                  (4) 

where we have used the well-known trigonometric identity   
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2sin ( ) (1 cos(2 )) / 2x x= − .       (5) 

Equation (4) further simplifies to  

 2 2mean( ) mean( / 4) mean( / 4cos(2 2 )).m ma V V tω θ= − +     (6) 

The first term on the right-hand-side of (6) is simply the mean of a constant which of 
course is just that constant. On the other hand, the second term on the right-hand-side of 
(6) is the mean of a sinusoid, which is well-known to be zero, as pointed out by Rico [1]. 
Hence, 2mean( ) / 4,ma V= which then of course makes the mean of (3) also this value.  

Finally, we need to take the square root of the mean of (3) to arrive at our conclusion: the 
rms value of a positive half-wave rectified sinusoid is 2 / 4 / 2,m mV V=  which is also the 
answer given by calculus.  

In the above, we assumed that we had a positive half-wave rectified sinusoid. For a 
negative half-wave rectified sinusoid, the proof is similar, except its equation is given by 

( ) sin( ) / 2 sin( ) / 2.m mv t V t V tω θ ω θ= + − +  

Method II 

The equation for the positive half-wave rectified sine-wave shown in Fig. 1 can also be 
written in piecewise fashion as  

  

2( ) sin for 0
2

0 for .
2

m
Tv t V t t

T
T t T

π⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤
                              (7) 

Squaring (7) gives 

         

2 2 2 2( ) sin for 0
2

0 for .
2

m
Tv t V t t

T
T t T

π⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤
                              (8) 

A graph of this squared waveform is shown in Fig. 3. Furthermore, using (5), (8) can be 
written as a constant minus a cosine wave, as given below in (9). 
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2 2
2 4( ) cos for 0

2 2 2

0 for .
2

m mV V Tv t t t
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T t T

π⎛ ⎞= − ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤

                        (9) 
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Fig. 3. Plot of the square of the half-wave rectified sine-wave of Fig.1. 

Inspection of (9) shows that the squared waveform can be written as the difference of two 
waveforms, i.e.,  

2 ( ) ( ) ( )v t a t b t= − ,       (10) 

where 

    

2

( ) for 0
2 2

0 for 
2

mV Ta t t

T t T

= ≤ ≤

= ≤ ≤
      

and    
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2 4( ) cos for 0
2 2

0 for .
2

mV Tb t t t
T

T t T

π⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤

                              

These latter two waveforms are shown in Fig. 4(a) and Fig. 4(b).  

Now we need to find the mean of (10), which is  

 ( ) ( ) ( ) ( )2 2 2 2 2mean ( ) mean ( ) ( ) mean ( ) mean ( )v t a t b t a t b t= − = − .                 (11) 

Fortunately, the means on the right hand side of (11) are easily determined. Using the fact 
that the mean is simply the area under the curve over a period, divided by the period, as 
given in (1), we find ( )2 2mean ( ) / 4ma t V= and ( )2mean ( ) 0b t = . Hence, from (11), 

( )2 2mean ( ) / 4mv t V= and so the rms value of the waveform in Fig. 1 is / 2mV , as 
determined earlier with Method I.  
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Fig. 4(a).  Piecewise  constant component of the square of a half-wave rectified sine-
wave. Note that the mean of this waveform over a complete period is 2 / 4mV . 
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Fig. 4(b). Piecewise  sinusoidal  component of the square of a half-wave rectified sine-

wave. Note that the mean of this waveform over a complete period is zero. 

B. RMS Value of a Quarter-Wave Rectified Sine-wave 

The quarter-wave rectified sine-wave shown in Fig. 5 is typically found in silicon 
controlled rectifier (SCR) circuits. Fortunately, the rms value of this waveform can be 
found with Method II, as described above in Section II-A. 

Indeed, the equation for the quarter-wave rectified sine-wave shown in Fig. 5 can be 
written in piecewise fashion as  

2( ) sin for 
4 2

0 for 0 and .
4 2

m
T Tv t V t t

T
T Tt t T

π⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤ ≤ ≤

                        (12) 

Squaring (12) gives 

     

2 2 2 2( ) sin for 
4 2

0 for 0 and .
4 2

m
T Tv t V t t

T
T Tt t T

π⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤ ≤ ≤

                        (13) 

A graph of this squared waveform is shown in Fig. 6. Furthermore, using (5), (13) can be 
written as a constant minus a cosine wave, as given below in (14). 
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Fig. 5. Graph of a positive quarter-wave rectified sine-wave, which is useful in silicon-
controlled rectifier circuits. 
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Fig. 6. Graph of the square of the quarter-wave rectified sine-wave. 
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2 2
2 4( ) cos for 

2 2 4 2

0 for 0 and .
4 2

m mV V T Tv t t t
T

T Tt t T

π⎛ ⎞= − ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤ ≤ ≤

                  (14) 

As noted before, (14) can be written as the difference of two waveforms, i.e.,  

2 ( ) ( ) ( )v t a t b t= − ,            (15) 

where 

    

2

( ) for 
2 4 2

0 for 0 and
4 2

mV T Ta t t

T Tt t T

= ≤ ≤

= ≤ ≤ ≤ ≤
      

and    

2 4( ) cos for 
2 4 2

0 for 0 and .
4 2

mV T Tb t t t
T

T Tt t T

π⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

= ≤ ≤ ≤ ≤

 

These latter two waveforms are shown in Fig. 7(a) and Fig. 7(b).  

Now, using (11), we need to find the mean of (15). Fortunately, the means on the right 
hand side of (11) are easily determined to be ( )2 2mean ( ) / 8ma t V= and ( )2mean ( ) 0b t = . 

Hence, ( )2 2mean ( ) / 8mv t V= and so the rms value of the waveform in Fig. 5 is 
2 2

mV , as 

can also be verified with calculus.  

We wish to point out that the rms value of other waveforms that are found in SCR or 
Triac circuits can be found using Method II, e.g., the waveform shown in Fig. 8. 
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Fig. 7(a).  Piecewise  constant component of the square of a quarter-wave rectified sine-
wave. Note that the mean of this waveform over a complete period is 2 / 8mV . 
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Fig. 7(b). Piecewise  sinusoidal  component of the square of a quarter-wave rectified sine-
wave. Note that the mean of this waveform over a complete period is zero. 
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Fig. 8. Another waveform that can be found in electronic circuits, and whose rms value 
can be found with Method II. 

C. RMS Value of DC and a Sinusoid 

We now turn our attention to the rms value of a waveform that is the sum of a DC voltage 
and a sinusoid. In some Technology textbooks (e.g. [2]), this result is just given without 
any justification. In this subsection, we show how we can derive this result without 
calculus.  

In this case, ( ) sin( ),dc mv t V V tω θ= + + where dcV is the value of the DC voltage and mV is 
the amplitude of the sinusoid. Squaring this gives 

2 2 22 sin( ) sin ( ).dc dc m mV V V t V tω θ ω θ+ + + + Taking the mean produces the mean of three 
terms. The mean of the first term is simply 2 .dcV The mean of the second term is zero since 
we are taking the mean of a sinusoid. The mean of the third term is 

2 2mean( / 2 / 2cos(2 2 )),m mV V tω θ− + where we have again used (5). Hence, the mean of 
this third term becomes 2 / 2.mV  Therefore,  

2 2 2 2 2mean( 2 sin( ) sin ( )) / 2.dc dc m m dc mV V V t V t V Vω θ ω θ+ + + + = +   (16) 
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Taking the square root of (16) gives our desired result, i.e. the rms value of a DC voltage 
plus a sinusoid is given by 2 2 / 2.rms dc mV V V= +  

D. RMS Value of the Sum of Two Sinusoids 

In this subsection, we find the rms value of the sum of two sinusoids, i.e. we assume that 
1 2 1 1 1 2 2 2( ) ( ) ( ) sin( ) sin( ).m mv t v t v t V t V tω θ ω θ= + = + + +  First, we square this waveform to 

get 2 2 2 2 2
1 1 1 1 2 2 1 2 1 2 2( ) sin ( ) sin ( ) 2 sin( )sin( ).m m m mv t V t V t V V t tω θ ω θ ω θ ω θ= + + + + + + Using 

(5) and the trigonometric identitysin( )sin( ) cos( ) / 2 cos( ) / 2x y x y x y= − − + , we can 
write 

2 2 2 2 2
1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2

( ) / 2 / 2cos(2 2 ) / 2 / 2cos(2 2 )
cos[( ) ] cos[( ) )].

m m m m

m m m m

v t V V t V V t
V V t V V t

ω θ ω θ
ω ω θ θ ω ω θ θ

= − + + − +

+ − + − + + + +
            (17) 

Inspection of (17) shows that the square consists of 2 2 2
1 2( ) / 2 / 2m mv t V V= + + sum of 

sinusoids. Hence, when we properly take the mean of (17), the mean of the sum of 
sinusoids will be zero and so the rms value will be 2 2

1 2/ 2 / 2.rms m mV V V= +  

By properly taking the mean of (17), we mean that the observation length (time) over 
which the mean of 2 ( )v t  is computed must be carefully considered. There are three 
different cases to consider: (i) one sinusoid is an harmonic of the other, i.e. 2 1Nω ω= , 
where N is a positive integer, (ii) the sinusoids are not harmonically related, but 
nonetheless the sum is periodic, and (iii) the sum of the sinusoids is not periodic. 

In the first case, the observation time is simply the period of the sinusoid with the lowest 
frequency.  

In the second case, the observation time is the period (or integer multiple) of the sum of 
the sinusoids contained in 2 ( )v t and not the period of each individual sinusoid. The reader 
should recall that the period of the sum of sinusoids might be quite longer than the period 
of the individual sinusoid that has the longest period. For example, suppose 

( ) sin(3 ) sin(6 / 5 )v t t tπ π= + ; so that 2 ( )v t has frequencies 12 6ω π= rad/s,  

22 12 / 5ω π= rad/s, 1 2 9 / 5ω ω π− = rad/s and  1 2 21 / 5ω ω π+ =  rad/s. The corresponding 
period of each of these is 1 1/ 3T = s, 2 5 / 6T = s, 3 10 / 9T = s and 4 10 / 21T = s, respectfully. 
Hence, in this case, the period of the sum is given by 10 / 3sumT = s, as this is the 
minimum time necessary to ensure that all the sinusoids have gone through complete 
cycles. Indeed, for this example, 1 2 3 410 / 3 10 4 3 7sumT s T T T T= = = = = : that is, the first 
sinusoid completes ten cycles, the second completes four, the third sinusoid completes 
three, and the fourth completes seven cycles.   
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Fig. 9(a) shows a PSpice plot of ( ) sin(3 ) sin(6 / 5 )v t t tπ π= + , and Fig. 9(b) shows the 
square of that same waveform. Clearly, the period of 2 ( )v t is 10 / 3sumT = s, as expected. 
Therefore, the time over which the mean of 2 ( )v t is computed should be integer multiples 
of 10/3 s. This fact is verified in Fig. 9(c), which shows a PSpice plot of the mean of 

2 ( )v t as a function of observation length (time). From the graph, it is clearly seen that 
PSpice rightly determines the correct mean value of unity at integer multiples of 10/3 s, 
and also at other observations lengths. However, to determine these latter observation 
lengths requires calculus: hence, we will limit ourselves to calculating the mean over the 
period of the sum, or integer multiples of this.      

Finally, in the third case, the period of the sum of two sinusoids might be infinite and so 
the mean computation has to be taken at specific values of time, or can only be well-
approximated by computing the mean over a “long” period of time. For example, see Fig. 
10(a) which shows a PSpice plot of ( ) sin(2 ) sin(2 2 )v t t tπ π= + . Note that this 
waveform is not periodic because the ratio of the frequencies of its sine waves is an 
irrational number. Also, see Fig. 10(b) which shows the square of this waveform, which 
also is not periodic. Furthermore, Fig. 10(c) shows the mean of the squared waveform as 
a function of observation length (time). Clearly, the correct determination of the mean 
value of unity for this aperiodic waveform depends upon the mean being taken over 
specific times. However, to calculate these specific times requires the use of calculus. On 
the other hand, as can be seen from Fig. 10(c), the longer the observation time to 
calculate the mean, the more accurate the calculation becomes. Therefore, we need not 
worry about determining the exact times over which the mean should be calculated; 
rather, we just allow the observation time to be a lot longer than the period of the lowest 
frequency sine wave in the squared waveform.      

We end this subsection by pointing out that this method of finding the rms value of a 
waveform which is the sum of two sinusoids can easily be generalized to a waveform 
which is the sum of N sinusoids, where N is any positive integer. 
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Fig. 9(a). Plot of ( ) sin(3 ) sin(6 / 5)v t t tπ π= + . Note that the period is 10/3 s. 
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Fig. 9(b). Plot of ( )22 ( ) sin(3 ) sin(6 / 5)v t t tπ π= + . Note that the period is 10/3 s. 
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Fig. 9(c). Plot of ( )22mean ( ) mean sin(3 ) sin(6 / 5)v t t tπ π⎡ ⎤⎡ ⎤ = +⎣ ⎦ ⎣ ⎦ as a function of 

observation length (time) of the mean calculation.  
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Fig. 10(a). Plot of ( ) sin(2 ) sin(2 2 )v t t tπ π= + . Note the lack of periodicity. 
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Fig. 10(b). Plot of ( )22 ( ) sin(2 ) sin(2 2 )v t t tπ π= + . Note the lack of periodicity. 
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Fig. 10(c). Plot of ( )22mean ( ) mean sin(2 ) sin(2 2 )v t t tπ π⎡ ⎤⎡ ⎤ = +⎣ ⎦ ⎢ ⎥⎣ ⎦
as a function of 

observation length (time) of the mean calculation.  
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E. RMS Value of a Triangular Waveform 

The rms value of a triangular waveform is known from calculus to be 
/ 3 0.5774 ,m mV V= and is of benefit in finding the level of ripple in a power supply. 

Here, we show this same result without using calculus.  

A graph of a triangular waveform is shown below in Fig. 11(a) and its square is given in 
Fig. 11(b). Note that the mean of this squared waveform is the same whether the mean is 
computed over the full cycle or over just half the cycle. Hence, we will compute the mean 

from .
4

 to
4

TT
−  Note also that the equation of the triangular waveform over this time is 

given by  

  tV
T

tv m
4)( =            for  .

4
 t

4
TT

≤≤−      (18) 

Therefore, the squared waveform has the equation 

                          22
2

2 16)( tV
T

tv m=    for  .
4

 t
4

TT
≤≤−                                        (19) 
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Fig. 11(a). Plot of a triangular waveform over a complete cycle.  
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Fig. 11(b). Plot of the square of the triangular waveform above, over a complete cycle. 

Furthermore, the squared waveform over this time forms the parabola ACB, whose height 
is 2

mV  and whose base is 2/T . Therefore, the enclosed area of this parabola is well-known 

to be two-thirds the base times the height or 2

23
2

mVT . However, the area under the 

squared waveform is the enclosed area of the parabola ACB subtracted from the 
enclosing rectangle ABDE, whose base is 2/T and whose height is 2

mV , and hence whose 

area is 2

2 mVT . So, the area below the curve of the squared triangular waveform is 2

23
1

mVT , 

and therefore its mean is this value divided by 2/T or 2

3
1

mV .  Taking the square root of 

this gives the desired result. 

F. RMS Value of a Pulse Train 

We have left perhaps the easiest waveform for last. This waveform is a pulse train and is 
shown in Fig. 12(a), whereas its square is shown in Fig. 12(b). Clearly, the mean of the 
square is just the area of the squared voltage ( 2

mV τ ) divided by the period, or 2 /mV Tτ . 

Hence, the rms value is given by mV
T
τ , which is a well-known result from calculus. 
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Fig. 12(a). Plot of a pulse train over a complete cycle.  

0 T/2 T
0  

Vm*Vm

Time (s)

S
qu

ar
e 

of
 V

ol
ta

ge
 (V

2 )

τ

 

Fig. 12(b). Plot of the square of the pulse train above, over a complete cycle. 
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III. Conclusion 

In this paper, the rms value of various waveforms was determined without using calculus. 
This should be of immense help to the Technology student. Furthermore, a discussion of 
the importance of using the correct observation length to compute the mean was also 
given. 
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